If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+7x-555=0
a = 2; b = 7; c = -555;
Δ = b2-4ac
Δ = 72-4·2·(-555)
Δ = 4489
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4489}=67$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-67}{2*2}=\frac{-74}{4} =-18+1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+67}{2*2}=\frac{60}{4} =15 $
| 44=15*t+.5*2.13*t^2 | | 25x^2+136x+196=0 | | 0=9/5x^2-6x+5 | | x^2+136x+4900=0 | | 4y+25+75=180 | | 4-6x=2x+3/4 | | 44=15t+.5*2.13*t^2 | | -(5a+6)+2(3a=8) | | A=16w*9H | | 3x^2-61x+80=0 | | 8(2x-3)=-10x+54 | | X=-73x-7 | | 125m-100m+42,750=45,675-200M | | 6-9x=5x-9x-19 | | 2x^2-3x+3=0 | | 1/2-5/9x=7/9x+7/2 | | 5x+13-4x-2=27 | | -1/5b-12=-2 | | 1/2s-1/4s+1=-6 | | 4d⋅2+4=16 | | 8c+6-9c=2-c-15 | | 15x-5x+4=-2x | | x-5=15-x | | -2+2x=-5x-3 | | 4(2x-1)-3=5x-25 | | 6p+7=-83 | | 2(x-3)=(x-1 | | -3.2-3x=1.9 | | 4-4x=3x-12 | | |3x-7|=11 | | |7x-6|=|8x-3| | | 11w+12/w+4=0 |